Wednesday, 4 April 2018

Design do sistema de negociação


Arquitetura do sistema de comércio algorítmico.


Anteriormente, neste blog, escrevi sobre a arquitetura conceitual de um sistema de negociação algorítmico inteligente, bem como os requisitos funcionais e não funcionais de um sistema de negociação algorítmica de produção. Desde então, criei uma arquitetura de sistema que, acredito, poderia satisfazer esses requisitos arquitetônicos. Nesta publicação, descreverei a arquitetura seguindo as diretrizes dos padrões ISO / IEC / IEEE 42018 e padrão de descrição da arquitetura de engenharia de software. De acordo com este padrão, uma descrição de arquitetura deve:


Contém várias visualizações arquitetônicas padronizadas (por exemplo, em UML) e Mantenha a rastreabilidade entre decisões de design e requisitos arquitetônicos.


Definição de arquitetura de software.


Ainda não há consenso quanto ao que é uma arquitetura do sistema. No contexto deste artigo, é definido como a infra-estrutura dentro da qual os componentes do aplicativo que satisfazem os requisitos funcionais podem ser especificados, implantados e executados. Os requisitos funcionais são as funções esperadas do sistema e seus componentes. Os requisitos não funcionais são medidas através das quais a qualidade do sistema pode ser medida.


Um sistema que satisfaça plenamente seus requisitos funcionais ainda pode não atender às expectativas se os requisitos não funcionais forem deixados insatisfeitos. Para ilustrar este conceito, considere o seguinte cenário: um sistema de negociação algorítmico que você acabou de comprar / construir faz excelentes decisões de negociação, mas é completamente inoperacional com os sistemas de gestão e contabilidade de risco das organizações. Esse sistema atenderia às suas expectativas?


Arquitetura conceitual.


Uma visão conceitual descreve conceitos e mecanismos de alto nível que existem no sistema no mais alto nível de granularidade. Nesse nível, o sistema de negociação algorítmica segue uma arquitetura orientada a eventos (EDA) dividida em quatro camadas e dois aspectos arquitetônicos. Para cada camada e referência de aspecto arquiteturas e padrões são usados. Padrões arquitetônicos são estruturas comprovadas e genéricas para alcançar requisitos específicos. Os aspectos arquitetônicos são preocupações transversais que abrangem múltiplos componentes.


Arquitetura orientada a eventos - uma arquitetura que produz, detecta, consome e reage a eventos. Os eventos incluem movimentos do mercado em tempo real, eventos ou tendências complexas e eventos comerciais, e. enviando um pedido.


Este diagrama ilustra a arquitetura conceitual do sistema de negociação algorítmica.


Arquiteturas de referência.


Para usar uma analogia, uma arquitetura de referência é semelhante aos planos para uma parede de suporte de carga. Esta impressão azul pode ser reutilizada para projetos de construção múltipla independentemente do edifício que está sendo construído, pois satisfaz um conjunto de requisitos comuns. Da mesma forma, uma arquitetura de referência define um modelo contendo estruturas genéricas e mecanismos que podem ser usados ​​para construir uma arquitetura de software concreta que satisfaça requisitos específicos. A arquitetura para o sistema de negociação algorítmica usa uma arquitetura baseada em espaço (SBA) e um controlador de exibição de modelo (MVC) como referências. São também utilizadas boas práticas, como o armazenamento de dados operacionais (ODS), o padrão de transformação e carregamento de extratos (ETL) e um data warehouse (DW).


Controle de exibição de modelo - um padrão que separa a representação de informações da interação do usuário com ela. Arquitetura baseada em espaço - especifica uma infra-estrutura onde as unidades de processamento acopladas vagamente interagem entre si através de uma memória associativa compartilhada chamada espaço (mostrado abaixo).


Visão estrutural.


A visão estrutural de uma arquitetura mostra os componentes e subcomponentes do sistema de negociação algorítmica. Ele também mostra como esses componentes são implantados em infra-estrutura física. Os diagramas UML utilizados nesta visão incluem diagramas de componentes e diagramas de implantação. Abaixo está a galeria dos diagramas de implantação do sistema de negociação algorítmico geral e as unidades de processamento na arquitetura de referência SBA, bem como diagramas de componentes relacionados para cada uma das camadas.


Diagrama de componentes de processamento de comerciantes / eventos automatizados Fonte de dados e diagrama de componente de camada de pré-processamento Diagrama de componente de interface de usuário baseado em MVC.


Táticas arquitetônicas.


De acordo com o instituto de engenharia de software, uma tática arquitetônica é um meio de satisfazer um requisito de qualidade, manipulando algum aspecto de um modelo de atributo de qualidade através de decisões de design arquitetônico. Um exemplo simples usado na arquitetura do sistema de negociação algorítmica é 'manipular' um armazenamento de dados operacional (ODS) com um componente de consulta contínua. Este componente analisaria continuamente o ODS para identificar e extrair eventos complexos. As seguintes táticas são usadas na arquitetura:


O padrão do disruptor nas filas de eventos e pedidos Memória compartilhada para as filas de eventos e pedidos Linguagem de consulta contínua (CQL) na filtragem de dados ODS com o padrão de design do filtro em dados recebidos Algoritmos de evitação de congestionamentos em todas as conexões de entrada e saída Gerenciamento de filas ativas (AQM ) e notificação de congestionamento explícito Recursos de computação de mercadorias com capacidade de atualização (escalável) Redundância ativa para todos os pontos de falha únicos Indicação e estruturas de persistência otimizadas no ODS Programe backup de dados regulares e scripts de limpeza para ODS Histórico de transações em todos os bancos de dados Súmrios para todos Ordens para detectar falhas Anotar eventos com timestamps para ignorar eventos "obsoletos". Regras de validação de pedidos, por exemplo, quantidades de comércio máximo Componentes de comerciante automatizado usam um banco de dados em memória para análise Autenticação em dois estágios para interfaces de usuário conectando-se à ATs Criptografia em interfaces de usuário e conexões ao padrão de design ATs Observer para que o MVC gerencie visualizações.


A lista acima é apenas algumas decisões de design que identifiquei durante o projeto da arquitetura. Não é uma lista completa de táticas. À medida que o sistema está sendo desenvolvido, táticas adicionais devem ser empregadas em múltiplos níveis de granularidade para atender aos requisitos funcionais e não funcionais. Abaixo estão três diagramas que descrevem o padrão de design do disruptor, o padrão de design do filtro e o componente de consulta contínua.


Visão comportamental.


Essa visão de uma arquitetura mostra como os componentes e camadas devem interagir um com o outro. Isso é útil ao criar cenários para testar projetos de arquitetura e para entender o sistema de ponta a ponta. Essa visão consiste em diagramas de seqüência e diagramas de atividades. Diagramas de atividades que mostram o processo interno do sistema de negociação algorítmica e como os comerciantes devem interagir com o sistema de negociação algorítmica são mostrados abaixo.


Tecnologias e estruturas.


O passo final na concepção de uma arquitetura de software é identificar potenciais tecnologias e estruturas que poderiam ser utilizadas para realizar a arquitetura. Como princípio geral, é melhor aproveitar as tecnologias existentes, desde que satisfaçam adequadamente os requisitos funcionais e não funcionais. Uma estrutura é uma arquitetura de referência realizada, e. JBoss é uma estrutura que realiza a arquitetura de referência JEE. As seguintes tecnologias e frameworks são interessantes e devem ser consideradas na implementação de um sistema de negociação algorítmico:


CUDA - NVidia tem uma série de produtos que suportam modelagem de finanças computacionais de alto desempenho. Pode-se conseguir até 50x melhorias no desempenho ao executar simulações Monte Carlo na GPU em vez da CPU. Rio Apache - Rio é um kit de ferramentas usado para desenvolver sistemas distribuídos. Ele foi usado como uma estrutura para a construção de aplicativos com base no padrão SBA Apache Hadoop - no caso de registro invasivo ser um requisito, então o uso do Hadoop oferece uma solução interessante para o problema dos grandes dados. O Hadoop pode ser implantado em um ambiente em cluster que suporta tecnologias CUDA. AlgoTrader - uma plataforma de negociação algorítmica de código aberto. O AlgoTrader poderia ser implantado no lugar dos componentes do comerciante automatizado. FIX Engine - um aplicativo autônomo que aceita os protocolos do Financial Information Exchange (FIX), incluindo FIX, FAST e FIXatdl.


Embora não seja uma tecnologia ou uma estrutura, os componentes devem ser criados com uma interface de programação de aplicativos (API) para melhorar a interoperabilidade do sistema e seus componentes.


Conclusão.


A arquitetura proposta foi projetada para satisfazer requisitos muito genéricos identificados para sistemas de negociação algorítmica. Geralmente, os sistemas de negociação algorítmica são complicados por três fatores que variam de acordo com cada implementação:


Dependências em sistemas empresariais e de intercâmbio externos Requisitos não funcionais desafiadores e restrições arquitetônicas em evolução.


Por conseguinte, a arquitetura de software proposta deve ser adaptada caso a caso para satisfazer requisitos organizacionais e regulatórios específicos, bem como para superar restrições regionais. A arquitetura do sistema de negociação algorítmica deve ser vista como apenas um ponto de referência para indivíduos e organizações que desejam projetar seus próprios sistemas de negociação algorítmica.


Para uma cópia completa e fontes usadas, baixe uma cópia do meu relatório. Obrigado.


História anterior.


Requisitos do sistema de negociação algorítmica.


Próxima História.


Otimização de portfólio usando otimização de enxertia de partículas.


Excelente visão geral, e um bom começo na arquitetura. Sua conclusão foi adequada, e apontou por que os sistemas de software de negociação algorítmica requerem back-testing e ajustes constantes para mantê-los relevantes. Boa leitura!


1 de fevereiro de 2018.


Quando os dados de commodities ou renda fixa são imprecisos ou lentos em receber, os modelos podem ter dificuldade em calcular especialmente no espaço de um evento Black Swann.


Muito obrigado por este artigo. Estive pensando em AI em finanças desde o final da década de 90 e, finalmente, as tecnologias e as APIs estão comumente disponíveis. Seu artigo e blog são uma ótima ajuda para fazer esses primeiros passos para tornar realidade os sonhos dos anos anteriores. Muito obrigado e boa sorte em seus novos empreendimentos!


Mantenha-me atualizado no seu progresso. Estou muito interessado. Obrigado.


Envie um comentário.


Cancelar resposta.


Siga a Turing Finance.


Turing Finance Mailing List.


Amigos da Turing Finance.


Quantocracy é o melhor agregador de blog de finanças quantitativas com links para novas análises postadas todos os dias.


NMRQL é o fundo hedge quantitativo de que sou parte. Usamos a aprendizagem de máquinas para tentar vencer o mercado.


Arquitetura do sistema de comércio algorítmico.


Anteriormente, neste blog, escrevi sobre a arquitetura conceitual de um sistema de negociação algorítmico inteligente, bem como os requisitos funcionais e não funcionais de um sistema de negociação algorítmica de produção. Desde então, criei uma arquitetura de sistema que, acredito, poderia satisfazer esses requisitos arquitetônicos. Nesta publicação, descreverei a arquitetura seguindo as diretrizes dos padrões ISO / IEC / IEEE 42018 e padrão de descrição da arquitetura de engenharia de software. De acordo com este padrão, uma descrição de arquitetura deve:


Contém várias visualizações arquitetônicas padronizadas (por exemplo, em UML) e Mantenha a rastreabilidade entre decisões de design e requisitos arquitetônicos.


Definição de arquitetura de software.


Ainda não há consenso quanto ao que é uma arquitetura do sistema. No contexto deste artigo, é definido como a infra-estrutura dentro da qual os componentes do aplicativo que satisfazem os requisitos funcionais podem ser especificados, implantados e executados. Os requisitos funcionais são as funções esperadas do sistema e seus componentes. Os requisitos não funcionais são medidas através das quais a qualidade do sistema pode ser medida.


Um sistema que satisfaça plenamente seus requisitos funcionais ainda pode não atender às expectativas se os requisitos não funcionais forem deixados insatisfeitos. Para ilustrar este conceito, considere o seguinte cenário: um sistema de negociação algorítmico que você acabou de comprar / construir faz excelentes decisões de negociação, mas é completamente inoperacional com os sistemas de gestão e contabilidade de risco das organizações. Esse sistema atenderia às suas expectativas?


Arquitetura conceitual.


Uma visão conceitual descreve conceitos e mecanismos de alto nível que existem no sistema no mais alto nível de granularidade. Nesse nível, o sistema de negociação algorítmica segue uma arquitetura orientada a eventos (EDA) dividida em quatro camadas e dois aspectos arquitetônicos. Para cada camada e referência de aspecto arquiteturas e padrões são usados. Padrões arquitetônicos são estruturas comprovadas e genéricas para alcançar requisitos específicos. Os aspectos arquitetônicos são preocupações transversais que abrangem múltiplos componentes.


Arquitetura orientada a eventos - uma arquitetura que produz, detecta, consome e reage a eventos. Os eventos incluem movimentos do mercado em tempo real, eventos ou tendências complexas e eventos comerciais, e. enviando um pedido.


Este diagrama ilustra a arquitetura conceitual do sistema de negociação algorítmica.


Arquiteturas de referência.


Para usar uma analogia, uma arquitetura de referência é semelhante aos planos para uma parede de suporte de carga. Esta impressão azul pode ser reutilizada para projetos de construção múltipla independentemente do edifício que está sendo construído, pois satisfaz um conjunto de requisitos comuns. Da mesma forma, uma arquitetura de referência define um modelo contendo estruturas genéricas e mecanismos que podem ser usados ​​para construir uma arquitetura de software concreta que satisfaça requisitos específicos. A arquitetura para o sistema de negociação algorítmica usa uma arquitetura baseada em espaço (SBA) e um controlador de exibição de modelo (MVC) como referências. São também utilizadas boas práticas, como o armazenamento de dados operacionais (ODS), o padrão de transformação e carregamento de extratos (ETL) e um data warehouse (DW).


Controle de exibição de modelo - um padrão que separa a representação de informações da interação do usuário com ela. Arquitetura baseada em espaço - especifica uma infra-estrutura onde as unidades de processamento acopladas vagamente interagem entre si através de uma memória associativa compartilhada chamada espaço (mostrado abaixo).


Visão estrutural.


A visão estrutural de uma arquitetura mostra os componentes e subcomponentes do sistema de negociação algorítmica. Ele também mostra como esses componentes são implantados em infra-estrutura física. Os diagramas UML utilizados nesta visão incluem diagramas de componentes e diagramas de implantação. Abaixo está a galeria dos diagramas de implantação do sistema de negociação algorítmico geral e as unidades de processamento na arquitetura de referência SBA, bem como diagramas de componentes relacionados para cada uma das camadas.


Diagrama de componentes de processamento de comerciantes / eventos automatizados Fonte de dados e diagrama de componente de camada de pré-processamento Diagrama de componente de interface de usuário baseado em MVC.


Táticas arquitetônicas.


De acordo com o instituto de engenharia de software, uma tática arquitetônica é um meio de satisfazer um requisito de qualidade, manipulando algum aspecto de um modelo de atributo de qualidade através de decisões de design arquitetônico. Um exemplo simples usado na arquitetura do sistema de negociação algorítmica é 'manipular' um armazenamento de dados operacional (ODS) com um componente de consulta contínua. Este componente analisaria continuamente o ODS para identificar e extrair eventos complexos. As seguintes táticas são usadas na arquitetura:


O padrão do disruptor nas filas de eventos e pedidos Memória compartilhada para as filas de eventos e pedidos Linguagem de consulta contínua (CQL) na filtragem de dados ODS com o padrão de design do filtro em dados recebidos Algoritmos de evitação de congestionamentos em todas as conexões de entrada e saída Gerenciamento de filas ativas (AQM ) e notificação de congestionamento explícito Recursos de computação de mercadorias com capacidade de atualização (escalável) Redundância ativa para todos os pontos de falha únicos Indicação e estruturas de persistência otimizadas no ODS Programe backup de dados regulares e scripts de limpeza para ODS Histórico de transações em todos os bancos de dados Súmrios para todos Ordens para detectar falhas Anotar eventos com timestamps para ignorar eventos "obsoletos". Regras de validação de pedidos, por exemplo, quantidades de comércio máximo Componentes de comerciante automatizado usam um banco de dados em memória para análise Autenticação em dois estágios para interfaces de usuário conectando-se à ATs Criptografia em interfaces de usuário e conexões ao padrão de design ATs Observer para que o MVC gerencie visualizações.


A lista acima é apenas algumas decisões de design que identifiquei durante o projeto da arquitetura. Não é uma lista completa de táticas. À medida que o sistema está sendo desenvolvido, táticas adicionais devem ser empregadas em múltiplos níveis de granularidade para atender aos requisitos funcionais e não funcionais. Abaixo estão três diagramas que descrevem o padrão de design do disruptor, o padrão de design do filtro e o componente de consulta contínua.


Visão comportamental.


Essa visão de uma arquitetura mostra como os componentes e camadas devem interagir um com o outro. Isso é útil ao criar cenários para testar projetos de arquitetura e para entender o sistema de ponta a ponta. Essa visão consiste em diagramas de seqüência e diagramas de atividades. Diagramas de atividades que mostram o processo interno do sistema de negociação algorítmica e como os comerciantes devem interagir com o sistema de negociação algorítmica são mostrados abaixo.


Tecnologias e estruturas.


O passo final na concepção de uma arquitetura de software é identificar potenciais tecnologias e estruturas que poderiam ser utilizadas para realizar a arquitetura. Como princípio geral, é melhor aproveitar as tecnologias existentes, desde que satisfaçam adequadamente os requisitos funcionais e não funcionais. Uma estrutura é uma arquitetura de referência realizada, e. JBoss é uma estrutura que realiza a arquitetura de referência JEE. As seguintes tecnologias e frameworks são interessantes e devem ser consideradas na implementação de um sistema de negociação algorítmico:


CUDA - NVidia tem uma série de produtos que suportam modelagem de finanças computacionais de alto desempenho. Pode-se conseguir até 50x melhorias no desempenho ao executar simulações Monte Carlo na GPU em vez da CPU. Rio Apache - Rio é um kit de ferramentas usado para desenvolver sistemas distribuídos. Ele foi usado como uma estrutura para a construção de aplicativos com base no padrão SBA Apache Hadoop - no caso de registro invasivo ser um requisito, então o uso do Hadoop oferece uma solução interessante para o problema dos grandes dados. O Hadoop pode ser implantado em um ambiente em cluster que suporta tecnologias CUDA. AlgoTrader - uma plataforma de negociação algorítmica de código aberto. O AlgoTrader poderia ser implantado no lugar dos componentes do comerciante automatizado. FIX Engine - um aplicativo autônomo que aceita os protocolos do Financial Information Exchange (FIX), incluindo FIX, FAST e FIXatdl.


Embora não seja uma tecnologia ou uma estrutura, os componentes devem ser criados com uma interface de programação de aplicativos (API) para melhorar a interoperabilidade do sistema e seus componentes.


Conclusão.


A arquitetura proposta foi projetada para satisfazer requisitos muito genéricos identificados para sistemas de negociação algorítmica. Geralmente, os sistemas de negociação algorítmica são complicados por três fatores que variam de acordo com cada implementação:


Dependências em sistemas empresariais e de intercâmbio externos Requisitos não funcionais desafiadores e restrições arquitetônicas em evolução.


Por conseguinte, a arquitetura de software proposta deve ser adaptada caso a caso para satisfazer requisitos organizacionais e regulatórios específicos, bem como para superar restrições regionais. A arquitetura do sistema de negociação algorítmica deve ser vista como apenas um ponto de referência para indivíduos e organizações que desejam projetar seus próprios sistemas de negociação algorítmica.


Para uma cópia completa e fontes usadas, baixe uma cópia do meu relatório. Obrigado.


História anterior.


Requisitos do sistema de negociação algorítmica.


Próxima História.


Otimização de portfólio usando otimização de enxertia de partículas.


Excelente visão geral, e um bom começo na arquitetura. Sua conclusão foi adequada, e apontou por que os sistemas de software de negociação algorítmica requerem back-testing e ajustes constantes para mantê-los relevantes. Boa leitura!


1 de fevereiro de 2018.


Quando os dados de commodities ou renda fixa são imprecisos ou lentos em receber, os modelos podem ter dificuldade em calcular especialmente no espaço de um evento Black Swann.


Muito obrigado por este artigo. Estive pensando em AI em finanças desde o final da década de 90 e, finalmente, as tecnologias e as APIs estão comumente disponíveis. Seu artigo e blog são uma ótima ajuda para fazer esses primeiros passos para tornar realidade os sonhos dos anos anteriores. Muito obrigado e boa sorte em seus novos empreendimentos!


Mantenha-me atualizado no seu progresso. Estou muito interessado. Obrigado.


Envie um comentário.


Cancelar resposta.


Siga a Turing Finance.


Turing Finance Mailing List.


Amigos da Turing Finance.


Quantocracy é o melhor agregador de blog de finanças quantitativas com links para novas análises postadas todos os dias.


NMRQL é o fundo hedge quantitativo de que sou parte. Usamos a aprendizagem de máquinas para tentar vencer o mercado.


Codificação de sistemas comerciais: design do sistema.


Por Justin Kuepper.


Passo 1: Crie as regras do seu sistema comercial.


O primeiro passo ao projetar um sistema de negociação é simplesmente o surgimento das regras pelas quais seu sistema irá operar. Deve haver quatro regras básicas para cada sistema comercial:


Comprar - Identifique quando você deseja comprar uma posição. Vender - Identifique quando você quer vender uma posição. Parar - Identifique quando você deseja cortar suas perdas. Alvo - Identifique quando você deseja reservar um ganho. Então, por exemplo:


Comprar - Quando a média móvel de 30 dias (MA) cruza acima da Vaga de MA de 60 dias - Quando o Mestre de 30 dias cruza abaixo da parada MA de 60 dias - Perda máxima de 10 unidades Alvo - Alvo de 10 unidades Este sistema de exemplo comprará e venderá com base nas médias móveis de 30 e 60 dias e automaticamente registrará ganhos após um lucro de 10 unidades ou venderá em uma perda após um movimento de 10 unidades na direção oposta.


Agora que temos nossas regras baixas, precisamos identificar os componentes envolvidos em cada regra. Cada componente deve conter dois elementos:


O indicador ou estudo utilizado As configurações para o indicador ou estudo Estes componentes devem ser construídos digitando o nome abreviado para o estudo, seguido das configurações entre parênteses. Essas configurações em parênteses são referidas como "parâmetros" do indicador ou estudo. Ocasionalmente, um estudo pode ter vários parâmetros, caso em que você simplesmente os separa com vírgulas.


MA (25) - média móvel de 25 dias RSI (25) - índice de resistência relativa de 25 dias MACD (fechar (0), 5,5) - conjunto de divergência de convergência média móvel com base no fechamento de hoje, com um comprimento rápido de cinco dias e um comprimento lento de cinco dias Se você não tiver certeza de quantos parâmetros requer um determinado componente, você pode simplesmente consultar a documentação do seu programa de negociação, que lista esses componentes, juntamente com os valores que precisam ser preenchidos. Por exemplo, podemos ver que a Tradecision nos diz que precisamos de três parâmetros com MACD:


Então, para o exemplo mencionado no primeiro passo, usaríamos:


MA (30) - Significado média móvel de 30 dias MA (60) - Significado média móvel de 60 dias Passo 3: Adicionando ação.


Agora vamos adicionar ações às nossas regras. Cada ação adere ao seguinte formato básico:


Normalmente, a condição consistirá nos componentes e parâmetros que você criou acima, enquanto a ação consistirá em comprar ou vender. As condições também podem consistir em inglês simples se nenhum componente estiver presente. Observe que o componente "while" é opcional.


SE MA (30) cruza acima de MA (60) ENTÃO Compre SE MA (30) cruza abaixo de MA (60) QUALQUER Volume (20,000) ENTÃO Vença SE EMA (25) é maior do que MA (5) ENTÃO Vença SE RSI (20) Igual a 50 ENTÃO Compre assim, pelo exemplo que usamos, simplesmente listaremos:


SE MA (30) cruza acima de MA (60) ENTÃO Compre SE MA (30) cruza abaixo de MA (60) ENTÃO Vença Se nosso comércio possui 10 unidades de lucro, então, venda Se nosso comércio possui 10 unidades de perda, então, venda o que vem em seguida?


Em seguida, vamos dar uma olhada na conversão dessas regras em um código que seu computador pode entender!


Sistemas comerciais: projetando seu sistema - Parte 1.


A seção anterior deste tutorial analisou os elementos que compõem um sistema comercial e discutiu as vantagens e desvantagens de usar esse sistema em um ambiente comercial real. Nesta seção, construímos esse conhecimento examinando quais mercados são especialmente adequados ao comércio de sistemas. Em seguida, analisaremos mais detalhadamente os diferentes gêneros dos sistemas de negociação.


O mercado de ações é provavelmente o mercado mais comum para o comércio, especialmente entre novatos. Nesta arena, dominam grandes players, como Warren Buffett e Merrill Lynch, e as estratégias tradicionais de investimento em crescimento e valor são, de longe, as mais comuns. No entanto, muitas instituições investiram significativamente na concepção, desenvolvimento e implementação de sistemas de negociação. Investidores individuais estão se juntando a essa tendência, embora lentamente.


A grande quantidade de ações disponíveis permite que os comerciantes testem sistemas em muitos tipos diferentes de ações - tudo, desde estoques extraterrestre extremamente voláteis (OTC) até chips azuis não voláteis.


A eficácia dos sistemas de negociação pode ser limitada pela baixa liquidez de algumas ações, especialmente os problemas de OTC e rosa.


As comissões podem comer em lucros gerados por negócios bem-sucedidos e podem aumentar as perdas. OTC e ações de folhas cor-de-rosa geralmente incorrem em taxas de comissão adicionais.


Os principais sistemas de negociação utilizados são aqueles que procuram valor - isto é, sistemas que usam parâmetros diferentes para determinar se uma segurança é subvalorizada em comparação com o desempenho passado, seus pares ou o mercado em geral.


O mercado de câmbio, ou forex, é o maior e mais líquido mercado do mundo. Os governos, bancos e outras grandes instituições do mundo trocam trilhões de dólares no mercado cambial todos os dias. A maioria dos comerciantes institucionais no forex conta com sistemas de negociação. O mesmo vale para os indivíduos no forex, mas alguns comerciais com base em relatórios econômicos ou pagamentos de juros.


A liquidez neste mercado - devido ao enorme volume - torna os sistemas de negociação mais precisos e eficazes.


Não há comissões neste mercado, apenas se espalha. Portanto, é muito mais fácil fazer muitas transações sem aumentar os custos.


Em comparação com o valor das ações ou commodities disponíveis, o número de moedas para o comércio é limitado. Mas, devido à disponibilidade de "pares de moedas exóticas" - ou seja, moedas de países menores - o alcance em termos de volatilidade não é necessariamente limitado.


Os principais sistemas de negociação utilizados no forex são aqueles que seguem as tendências (um ditado popular no mercado é "a tendência é seu amigo"), ou sistemas que compram ou vendem em breakouts. Isso ocorre porque os indicadores econômicos geralmente causam grandes movimentos de preços ao mesmo tempo.


Os mercados de ações, divisas e commodities oferecem negociação de futuros. Este é um veículo popular para o comércio de sistemas devido ao maior valor de alavancagem disponível e ao aumento da liquidez e da volatilidade. No entanto, esses fatores podem cortar as duas formas: podem amplificar seus ganhos ou amplificar suas perdas. Por esse motivo, o uso de futuros é geralmente reservado para comerciantes avançados de sistemas individuais e institucionais. Isso ocorre porque os sistemas de negociação capazes de capitalizar o mercado de futuros exigem uma personalização muito maior, usam indicadores mais avançados e levam muito mais tempo para desenvolver.


Cabe ao investidor individual decidir qual mercado é mais adequado ao comércio de sistemas - cada um tem suas próprias vantagens e desvantagens. A maioria das pessoas está mais familiarizada com os mercados de ações, e essa familiaridade facilita o desenvolvimento de um sistema de negociação. No entanto, forex é normalmente pensado para ser a plataforma superior para operar sistemas de negociação - especialmente entre os comerciantes mais experientes. Além disso, se um comerciante decide capitalizar o aumento de alavancagem e volatilidade, a alternativa de futuros está sempre aberta. Em última análise, a escolha está nas mãos do desenvolvedor do sistema.


O método mais comum de negociação de sistema é o sistema de tendências. Na sua forma mais fundamental, este sistema simplesmente espera um movimento de preço significativo, depois compra ou vende nessa direção. Este tipo de bancos de sistemas na esperança de que esses movimentos de preços mantenham a tendência.


Sistemas médios móveis.


Freqüentemente usado na análise técnica, uma média móvel é um indicador que mostra simplesmente o preço médio de uma ação ao longo de um período de tempo. A essência das tendências é derivada dessa medida. A maneira mais comum de determinar a entrada e a saída é um cruzamento. A lógica por trás disso é simples: uma nova tendência é estabelecida quando o preço cai acima ou abaixo da média do preço histórico (tendência). Aqui está um gráfico que traça tanto o preço (linha azul) quanto o Mestre de 20 dias (linha vermelha) da IBM:


O conceito fundamental por trás deste tipo de sistema é semelhante ao de um sistema de média móvel. A idéia é que quando um novo alto ou baixo é estabelecido, o movimento do preço provavelmente continuará na direção do breakout. Um indicador que pode ser usado na determinação de breakouts é um simples Bollinger Band & reg; sobreposição. Bollinger Bands & reg; mostram médias de preços altos e baixos, e ocorrem breakouts quando o preço atende às bordas das bandas. Aqui está um gráfico que traça o preço (linha azul) e Bollinger Bands & reg; (linhas de cinza) da Microsoft:


Desvantagens de Trend-Following Systems:


Requisição de decisão empírica necessária - Ao determinar tendências, sempre há um elemento empírico a considerar: a duração da tendência histórica. Por exemplo, a média móvel pode ser nos últimos 20 dias ou nos últimos cinco anos, então o desenvolvedor deve determinar qual é o melhor para o sistema. Outros fatores a serem determinados são os altos e baixos médios em sistemas de breakout.


Lagging Nature - As médias móveis e os sistemas de breakout estarão sempre atrasados. Em outras palavras, eles nunca podem atingir o topo ou a parte inferior de uma tendência. Isso inevitavelmente resulta em uma perda de lucros potenciais, o que às vezes pode ser significativo.


Efeito Whipsaw - Entre as forças de mercado que são prejudiciais ao sucesso dos sistemas de tendência, este é um dos mais comuns. O efeito whipsaw ocorre quando a média móvel gera um sinal falso - isto é, quando a média cai apenas para o alcance, de repente, inverte a direção. Isso pode levar a perdas maciças, a menos que sejam utilizadas efetivas perdas de parada e técnicas de gerenciamento de risco.


Sideways Markets - Os sistemas de tendência seguinte são, por natureza, capazes de ganhar dinheiro somente em mercados que realmente fazem tendências. No entanto, os mercados também se movem de lado, ficando dentro de um certo intervalo por um longo período de tempo.


Pode ocorrer volatilidade extrema - Ocasionalmente, os sistemas que seguem a tendência podem experimentar alguma volatilidade extrema, mas o comerciante deve manter seu sistema. A incapacidade de fazê-lo resultará em falhas garantidas.


Basicamente, o objetivo com o sistema contra-tendência é comprar no menor baixo e vender no mais alto. A principal diferença entre este e o sistema de tendência seguinte é que o sistema contra-tendência não é auto-corretivo. Em outras palavras, não há tempo definido para sair de posições, e isso resulta em um potencial de downside ilimitado.


Tipos de sistemas de contra-tendência.


Muitos tipos diferentes de sistemas são considerados sistemas de contra-tendência. A idéia aqui é comprar quando o impulso em uma direção começa a desaparecer. Isso geralmente é calculado usando osciladores. Por exemplo, um sinal pode ser gerado quando os estocásticos ou outros indicadores de força relativa caem abaixo de certos pontos. Existem outros tipos de sistemas de negociação contra tendência, mas todos compartilham o mesmo objetivo fundamental: comprar baixo e vender alto.


Requisição de decisões e requisitos mecânicos - Por exemplo, um dos fatores que o desenvolvedor do sistema deve decidir é os pontos nos quais os indicadores de força relativa se desvanecem.


Pode ocorrer volatilidade extrema - esses sistemas também podem experimentar alguma volatilidade extrema e uma incapacidade de manter o sistema apesar dessa volatilidade resultará em falhas garantidas.


Desvantagem ilimitada - Como mencionado anteriormente, existe um potencial de downside ilimitado porque o sistema não é auto-corrigido (não há tempo definido para sair de posições).


Os principais mercados para os quais os sistemas de negociação são adequados são os mercados de ações, divisas e futuros. Cada um desses mercados tem suas vantagens e desvantagens. Os dois principais gêneros de sistemas de negociação são os sistemas de tendência e de contra-tendência. Apesar de suas diferenças, ambos os tipos de sistemas, em seus estágios de desenvolvimento, requerem uma tomada de decisão empírica por parte do desenvolvedor. Além disso, esses sistemas estão sujeitos a extrema volatilidade e isso pode exigir algum vigor - é essencial que o comerciante do sistema fique com seu sistema durante esses tempos. Na próxima parcela, examinaremos mais de perto como projetar um sistema de negociação e discutir alguns dos softwares que os comerciantes do sistema usam para facilitar sua vida.


Arquitetura do sistema de comércio algorítmico.


Anteriormente, neste blog, escrevi sobre a arquitetura conceitual de um sistema de negociação algorítmico inteligente, bem como os requisitos funcionais e não funcionais de um sistema de negociação algorítmica de produção. Desde então, criei uma arquitetura de sistema que, acredito, poderia satisfazer esses requisitos arquitetônicos. Nesta publicação, descreverei a arquitetura seguindo as diretrizes dos padrões ISO / IEC / IEEE 42018 e padrão de descrição da arquitetura de engenharia de software. De acordo com este padrão, uma descrição de arquitetura deve:


Contém várias visualizações arquitetônicas padronizadas (por exemplo, em UML) e Mantenha a rastreabilidade entre decisões de design e requisitos arquitetônicos.


Definição de arquitetura de software.


Ainda não há consenso quanto ao que é uma arquitetura do sistema. No contexto deste artigo, é definido como a infra-estrutura dentro da qual os componentes do aplicativo que satisfazem os requisitos funcionais podem ser especificados, implantados e executados. Os requisitos funcionais são as funções esperadas do sistema e seus componentes. Os requisitos não funcionais são medidas através das quais a qualidade do sistema pode ser medida.


Um sistema que satisfaça plenamente seus requisitos funcionais ainda pode não atender às expectativas se os requisitos não funcionais forem deixados insatisfeitos. Para ilustrar este conceito, considere o seguinte cenário: um sistema de negociação algorítmico que você acabou de comprar / construir faz excelentes decisões de negociação, mas é completamente inoperacional com os sistemas de gestão e contabilidade de risco das organizações. Esse sistema atenderia às suas expectativas?


Arquitetura conceitual.


Uma visão conceitual descreve conceitos e mecanismos de alto nível que existem no sistema no mais alto nível de granularidade. Nesse nível, o sistema de negociação algorítmica segue uma arquitetura orientada a eventos (EDA) dividida em quatro camadas e dois aspectos arquitetônicos. Para cada camada e referência de aspecto arquiteturas e padrões são usados. Padrões arquitetônicos são estruturas comprovadas e genéricas para alcançar requisitos específicos. Os aspectos arquitetônicos são preocupações transversais que abrangem múltiplos componentes.


Arquitetura orientada a eventos - uma arquitetura que produz, detecta, consome e reage a eventos. Os eventos incluem movimentos do mercado em tempo real, eventos ou tendências complexas e eventos comerciais, e. enviando um pedido.


Este diagrama ilustra a arquitetura conceitual do sistema de negociação algorítmica.


Arquiteturas de referência.


Para usar uma analogia, uma arquitetura de referência é semelhante aos planos para uma parede de suporte de carga. Esta impressão azul pode ser reutilizada para projetos de construção múltipla independentemente do edifício que está sendo construído, pois satisfaz um conjunto de requisitos comuns. Da mesma forma, uma arquitetura de referência define um modelo contendo estruturas genéricas e mecanismos que podem ser usados ​​para construir uma arquitetura de software concreta que satisfaça requisitos específicos. A arquitetura para o sistema de negociação algorítmica usa uma arquitetura baseada em espaço (SBA) e um controlador de exibição de modelo (MVC) como referências. São também utilizadas boas práticas, como o armazenamento de dados operacionais (ODS), o padrão de transformação e carregamento de extratos (ETL) e um data warehouse (DW).


Controle de exibição de modelo - um padrão que separa a representação de informações da interação do usuário com ela. Arquitetura baseada em espaço - especifica uma infra-estrutura onde as unidades de processamento acopladas vagamente interagem entre si através de uma memória associativa compartilhada chamada espaço (mostrado abaixo).


Visão estrutural.


A visão estrutural de uma arquitetura mostra os componentes e subcomponentes do sistema de negociação algorítmica. Ele também mostra como esses componentes são implantados em infra-estrutura física. Os diagramas UML utilizados nesta visão incluem diagramas de componentes e diagramas de implantação. Abaixo está a galeria dos diagramas de implantação do sistema de negociação algorítmico geral e as unidades de processamento na arquitetura de referência SBA, bem como diagramas de componentes relacionados para cada uma das camadas.


Diagrama de componentes de processamento de comerciantes / eventos automatizados Fonte de dados e diagrama de componente de camada de pré-processamento Diagrama de componente de interface de usuário baseado em MVC.


Táticas arquitetônicas.


De acordo com o instituto de engenharia de software, uma tática arquitetônica é um meio de satisfazer um requisito de qualidade, manipulando algum aspecto de um modelo de atributo de qualidade através de decisões de design arquitetônico. Um exemplo simples usado na arquitetura do sistema de negociação algorítmica é 'manipular' um armazenamento de dados operacional (ODS) com um componente de consulta contínua. Este componente analisaria continuamente o ODS para identificar e extrair eventos complexos. As seguintes táticas são usadas na arquitetura:


O padrão do disruptor nas filas de eventos e pedidos Memória compartilhada para as filas de eventos e pedidos Linguagem de consulta contínua (CQL) na filtragem de dados ODS com o padrão de design do filtro em dados recebidos Algoritmos de evitação de congestionamentos em todas as conexões de entrada e saída Gerenciamento de filas ativas (AQM ) e notificação de congestionamento explícito Recursos de computação de mercadorias com capacidade de atualização (escalável) Redundância ativa para todos os pontos de falha únicos Indicação e estruturas de persistência otimizadas no ODS Programe backup de dados regulares e scripts de limpeza para ODS Histórico de transações em todos os bancos de dados Súmrios para todos Ordens para detectar falhas Anotar eventos com timestamps para ignorar eventos "obsoletos". Regras de validação de pedidos, por exemplo, quantidades de comércio máximo Componentes de comerciante automatizado usam um banco de dados em memória para análise Autenticação em dois estágios para interfaces de usuário conectando-se à ATs Criptografia em interfaces de usuário e conexões ao padrão de design ATs Observer para que o MVC gerencie visualizações.


A lista acima é apenas algumas decisões de design que identifiquei durante o projeto da arquitetura. Não é uma lista completa de táticas. À medida que o sistema está sendo desenvolvido, táticas adicionais devem ser empregadas em múltiplos níveis de granularidade para atender aos requisitos funcionais e não funcionais. Abaixo estão três diagramas que descrevem o padrão de design do disruptor, o padrão de design do filtro e o componente de consulta contínua.


Visão comportamental.


Essa visão de uma arquitetura mostra como os componentes e camadas devem interagir um com o outro. Isso é útil ao criar cenários para testar projetos de arquitetura e para entender o sistema de ponta a ponta. Essa visão consiste em diagramas de seqüência e diagramas de atividades. Diagramas de atividades que mostram o processo interno do sistema de negociação algorítmica e como os comerciantes devem interagir com o sistema de negociação algorítmica são mostrados abaixo.


Tecnologias e estruturas.


O passo final na concepção de uma arquitetura de software é identificar potenciais tecnologias e estruturas que poderiam ser utilizadas para realizar a arquitetura. Como princípio geral, é melhor aproveitar as tecnologias existentes, desde que satisfaçam adequadamente os requisitos funcionais e não funcionais. Uma estrutura é uma arquitetura de referência realizada, e. JBoss é uma estrutura que realiza a arquitetura de referência JEE. As seguintes tecnologias e frameworks são interessantes e devem ser consideradas na implementação de um sistema de negociação algorítmico:


CUDA - NVidia tem uma série de produtos que suportam modelagem de finanças computacionais de alto desempenho. Pode-se conseguir até 50x melhorias no desempenho ao executar simulações Monte Carlo na GPU em vez da CPU. Rio Apache - Rio é um kit de ferramentas usado para desenvolver sistemas distribuídos. Ele foi usado como uma estrutura para a construção de aplicativos com base no padrão SBA Apache Hadoop - no caso de registro invasivo ser um requisito, então o uso do Hadoop oferece uma solução interessante para o problema dos grandes dados. O Hadoop pode ser implantado em um ambiente em cluster que suporta tecnologias CUDA. AlgoTrader - uma plataforma de negociação algorítmica de código aberto. O AlgoTrader poderia ser implantado no lugar dos componentes do comerciante automatizado. FIX Engine - um aplicativo autônomo que aceita os protocolos do Financial Information Exchange (FIX), incluindo FIX, FAST e FIXatdl.


Embora não seja uma tecnologia ou uma estrutura, os componentes devem ser criados com uma interface de programação de aplicativos (API) para melhorar a interoperabilidade do sistema e seus componentes.


Conclusão.


A arquitetura proposta foi projetada para satisfazer requisitos muito genéricos identificados para sistemas de negociação algorítmica. Geralmente, os sistemas de negociação algorítmica são complicados por três fatores que variam de acordo com cada implementação:


Dependências em sistemas empresariais e de intercâmbio externos Requisitos não funcionais desafiadores e restrições arquitetônicas em evolução.


Por conseguinte, a arquitetura de software proposta deve ser adaptada caso a caso para satisfazer requisitos organizacionais e regulatórios específicos, bem como para superar restrições regionais. A arquitetura do sistema de negociação algorítmica deve ser vista como apenas um ponto de referência para indivíduos e organizações que desejam projetar seus próprios sistemas de negociação algorítmica.


Para uma cópia completa e fontes usadas, baixe uma cópia do meu relatório. Obrigado.


História anterior.


Requisitos do sistema de negociação algorítmica.


Próxima História.


Otimização de portfólio usando otimização de enxertia de partículas.


Excelente visão geral, e um bom começo na arquitetura. Sua conclusão foi adequada, e apontou por que os sistemas de software de negociação algorítmica requerem back-testing e ajustes constantes para mantê-los relevantes. Boa leitura!


1 de fevereiro de 2018.


Quando os dados de commodities ou renda fixa são imprecisos ou lentos em receber, os modelos podem ter dificuldade em calcular especialmente no espaço de um evento Black Swann.


Muito obrigado por este artigo. Estive pensando em AI em finanças desde o final da década de 90 e, finalmente, as tecnologias e as APIs estão comumente disponíveis. Seu artigo e blog são uma ótima ajuda para fazer esses primeiros passos para tornar realidade os sonhos dos anos anteriores. Muito obrigado e boa sorte em seus novos empreendimentos!


Mantenha-me atualizado no seu progresso. Estou muito interessado. Obrigado.


Envie um comentário.


Cancelar resposta.


Siga a Turing Finance.


Turing Finance Mailing List.


Amigos da Turing Finance.


Quantocracy é o melhor agregador de blog de finanças quantitativas com links para novas análises postadas todos os dias.


NMRQL é o fundo hedge quantitativo de que sou parte. Usamos a aprendizagem de máquinas para tentar vencer o mercado.

No comments:

Post a Comment